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Abstract
We present the formal proof of a procedure to compute the phase-space volume
of initial conditions for trajectories that, for a constant energy, escape or ‘react’
from a multi-dimensional potential well with one or several exit/entrance
channels. The procedure relies on a phase-space formulation of transition
state theory. It gives the volume of reactive initial conditions as the sum over
the exit/entrance channels where each channel contributes by the product of
the phase-space flux associated with the channel and the mean residence time
in the well of those trajectories which escape through the channel. An example
is given to demonstrate the computational efficiency of the procedure.

PACS numbers: 45.20.Jj, 05.45.−a, 34.10.+x, 82.20.Db

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The problem of escape from a potential well where exit from the well is possible through
channels that are associated with saddle points is a common problem in many areas of physics.
In this letter, we prove a formula and present a procedure based on the formula that enables one
to compute the phase-space volumes of initial conditions in the well that, for a fixed energy,
lead to trajectories which escape from the potential well through any of these channels. We
note that a similar result, the classical limit of the so-called spectral theorem, has been obtained
by Pollak [1] in the context of molecular collisions (the spectral theorem relates time delays in
collisions to the density of states; see [2] for the historical background). The implementation
of our procedure relies on the recent development of a phase-space formulation of transition
state theory based on general ideas from dynamical systems theory [3–8] and we therefore
find it useful to provide a formal proof of the spectral theorem especially in this context.
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For energies slightly above the saddle, phase-space transition state theory, which is algorithmic
in nature, solves the key problem of how to define and construct a dividing surface near a
saddle point, which locally divides the energy surface into two disjoint components and which
is free of local ‘recrossing’. These properties which are essential for rate computations will
also play an important role in what follows.

In recent years, transition state theory has been recognized as a very fruitful approach
whose applicability goes far beyond its origin of conception in chemistry. It has been used
e.g. in atomic physics [9], studies of the rearrangements of clusters [10], solid state and
semi-conductor physics [11, 12], cosmology [13] and celestial mechanics [14]. The results
presented in this letter are of central interest for all of these areas as they open the way to study
fundamental questions like the violation of ergodicity assumptions on the dynamics which
are typically made in statistical approaches like Rice–Ramsperger–Kassel–Marcus (RRKM)
theory [15].

Before we derive the formula for the volume of reactive initial conditions in a potential
well, we recapitulate the building blocks of phase-space transition state theory.

2. Phase-space transition state theory

We start with an equilibrium point for Hamilton’s equations which is of saddle-centre–centre
type (which we refer to as ‘saddle’ for short, in what follows). A detailed theory for phase-
space transport associated with saddles has been developed in recent years [3–8]. For energies
slightly above that of a saddle, on each (2n − 1)-dimensional energy surface with n being the
number of degrees of freedom, there exists an invariant (2n − 3)-dimensional sphere S2n−3 of
saddle stability type, which is significant for two reasons:

• It is the ‘equator’ of a particular (2n − 2)-dimensional sphere, which we take as the
dividing surface. The equator separates the dividing surface into two hemispheres which
have the structure of open (2n − 2)-dimensional balls. Except for the equator (which
is an invariant manifold), the dividing surface is locally a ‘surface of no return’ in
the sense that trajectories which have crossed the dividing surface must leave a certain
neighbourhood of the dividing surface before they can possibly cross it again. For energies
‘sufficiently close’ to the energy of the saddle, the dividing surface satisfies the bottleneck
property. This means that the energy surface has locally the geometrical structure of
S2n−2 × I (i.e., (2n − 2)-sphere × interval where the interval corresponds to a so-called
reaction coordinate) and the dividing surface divides the energy surface into two disjoint
components. Moreover, the only way a trajectory can pass from one component of the
energy surface to the other in the ‘forward’ direction is through one hemisphere and
the only way to pass in the ‘backward’ direction is through the other hemisphere. The
hemispheres are thus the gateways to the exit and entrance channels for the energy surface
components. The fluxes through the forward and backward hemispheres are of equal
magnitude and opposite sign so that the total flux through the dividing surface is zero.
However, for our particular choice of dividing surface, the directional flux through each
hemisphere is minimal in a sense made precise in [16].

• The (2n − 3)-sphere is a normally hyperbolic invariant manifold (NHIM) [5]. Normal
hyperbolity means that the expansion and contraction rates of the dynamics on the (2n−3)-
sphere are dominated by those transverse to it. The NHIM therefore has stable and unstable
manifolds which in this case are (2n − 2)-dimensional, having the structure of spherical
cylinders, S2n−3 × R. Hence, they are of one dimension less than the energy surface and
act as ‘separatrices’; they ‘enclose’ volumes of the energy surface. Their key dynamical
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significance is that the only way that trajectories can pass through the dividing surface
is if they are inside a particular region of the energy surface enclosed by the stable and
unstable spherical cylinders.

For a system with two degrees of freedom, the NHIM is a periodic orbit. If this system is of
type ‘kinetic-plus-potential’ the configuration space projection of the periodic orbit connects,
for an energy slightly above the energy of the potential saddle, two branches of an iso-potential
line and this is the basis for the construction of the so-called periodic orbit dividing surface
(PODS) in the seminal work by McLafferty, Pechukas and Pollak [17–20].

For higher dimensions, the phase-space structures mentioned above can be computed
via a procedure based on Poincaré–Birkhoff normalization [7, 8] which yields a nonlinear
symplectic transformation of the original phase-space coordinates to new coordinates referred
to as the normal form coordinates. The NHIM, the local parts of its stable and unstable
manifolds and the dividing surface are simply given as normal form coordinate hyperplanes.
The phase-space structures are then mapped into the original phase-space coordinate system
by the inverse of the normal form transformation.

The phase-space structures, and techniques, are the key to analysing the problem of
‘escape’ or ‘reaction’ from a phase-space region. However, in order to use them, we must first
derive a more general result.

3. A rigorous statement on volumes within the energy surface that are
‘swept out’ by trajectories

Let us consider an n degree-of-freedom Hamiltonian system (M,ω) where M is a
(2n)-dimensional manifold (the phase space) and ω is a symplectic 2-form. The Hamiltonian
function, which is assumed not to depend on time, is H. The volume of a phase-space region
is obtained by integrating over it the (2n)-form � = ωn/n!. Since energy is conserved under
the dynamics, it makes sense to consider the volumes of regions in a single energy surface
�E . A differential form η to measure energy surface volume is a (2n − 1)-form by which the
phase-space volume form � can be decomposed according to � = dH ∧ η [21].

We want to derive a rigorous statement about how the integration of η over energy surface
regions swept out by trajectories can be evaluated. The statement is phrased in a way that
makes it directly applicable to the setting of transition state theory elucidated above.

Theorem 1. Let S and S ′ be two (2n − 1)-dimensional manifolds in M with S being a
coordinate hyperplane q1 = 0 of a canonical coordinate system (p1, . . . , pn, q1, . . . , qn).
Moreover, assume q̇1 > 0 in S which implies that S is transverse to the Hamiltonian flow. S ′ is
arbitrary and may coincide with S. Let E be a regular value of H and �E be the corresponding
energy surface. Assume that B ⊂ S ∩�E is a (2n−2)-dimensional manifold which, under the
map induced by the Hamiltonian flow, has a continuous image B ′ in S ′ ∩�E . Assume that the
corresponding orbit segments start on B and end on B ′ without having further intersections
with B or B ′. Then the energy surface volume of the set MB→B ′ , swept out by the orbit
segments between B and B ′, is given by

vol(MB→B ′) = φB〈t〉B, (1)

with

φB =
∫

B

�′,
(

�′ = ωn−1

(n − 1)!

)
(2)
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Figure 1. Sketch of a (2n − 1)-dimensional manifold S and a two-dimensional closed manifold
C in the (2n)-dimensional phase space. The deformation of C consists of C′, which is the image
of C in S under the inverse Hamiltonian flow, and �, which is swept over by letting the inverse
Hamiltonian flow act on the boundary ∂C.

being the flux through B, and with

〈t〉B =
∫
B

t�′∫
B

�′ , (3)

being the average of the passage time t : B → R
+, which maps points in B to the times they

require to reach S ′ under the Hamiltonian flow.

We start the proof of theorem 1 by the following generalization of a result by Binney,
Gerhard and Hut [22]

Lemma 2. Given the setting of theorem 1, there exists a sufficiently small phase-
space neighbourhood of MB→B ′ in which we can construct the canonical coordinates
(H, P2, . . . , Pn, t,Q2, . . . ,Qn) which are defined as follows. For a phase-space point in
this neighbourhood, H is the energy at this point, P2, . . . , Pn,Q2, . . . ,Qn are the coordinates
(p2, . . . , pn, q2, . . . , qn) of the image of this point in S under the inverse flow and t is the time
it takes the point to reach S under the inverse flow.

We first prove this result.

Proof (lemma 2). Since the Jacobian of the transformation (p1, p2, . . . , pn, q2, . . . , qn) �→
(H, p2, . . . , pn, q2, . . . , qn) which replaces p1 by H has determinant q̇1, and by our assumption
q̇1 > 0 in S, it follows that (H, p2, . . . , pn, q2, . . . , qn) are well-defined coordinates in S.
Moreover, from the uniqueness of solutions of ODEs (Hamilton’s equations in this case), it
follows that a point in the volume swept out by letting the Hamiltonian flow act on S is uniquely
determined by the coordinates (H, p2, . . . , pn, t, q2, . . . , qn) where t is the time it takes the
inverse flow to map the point back to S.

We now have to show that these coordinates are canonical, i.e. defining ω̃ = dH ∧ dt +∑n
k=2 dPk ∧ dQk we have to show that, in the above neighbourhood, ω̃ = ω. We thus

have to prove that ω̃ − ω gives zero when we apply it to two arbitrary vectors in the tangent
bundle of this neighbourhood, or equivalently, that the integral of ω̃ − ω over any small
two-dimensional bounded manifold in this neighbourhood vanishes. Let us consider such a
small two-dimensional manifold C, see figure 1. Since d(ω − ω̃) = 0 it follows from Stokes’
theorem that the integral of ω − ω̃ over C is the same as the integral over any continuous
deformation of C which has the same boundary ∂C as C. Consider the deformation shown in
figure 1 which consists of a part C ′ which is the image of C in S under the inverse Hamiltonian
flow and a part � which is the two-dimensional manifold swept out by letting the Hamiltonian
flow act upon ∂C until ∂C reaches S. Since it is clear that the restrictions of ω and ω̃ to C ′

coincide, it only remains to be shown that the restrictions of ω and ω̃ to � coincide as well.
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For a point in �, we choose two basis vectors u and v for the tangent space of � at this
point. Since � is foliated by orbits we can choose u to be the Hamiltonian vector field at the
point under consideration, i.e. u = (ṗ, q̇). The vector v is obtained as the derivative of some
phase-space curve (p(λ), q(λ)) which passes through this point, i.e. v = (dp/dλ, dq/dλ).
First we apply ω to (u, v). This gives

ω(u, v) =
n∑

k=1

((dpk(u) dqk(v) − dpk(v) dqk(u))

= −
n∑

k=1

((∂H/∂qk)(dqk/dλ) + (∂H/∂pk)(dpk/dλ))

= −dH/dλ,

where the last equality follows from the chain rule. Next we apply ω̃ to (u, v). This gives

ω̃(u, v) = dH(u) dt (v) − dH(v) dt (u) +
n∑

k=2

(dPk(u) dQk(v) − dPk(v) dQk(u)).

Since H, and Pk and Qk, k = 2, . . . , n, are conserved along trajectories with initial
conditions in S, it follows that dH(u) = dPk(u) = dQk(u) = 0, k = 2, . . . , n. Hence,
ω̃(u, v) = −dH(v) dt (u), and using dH(v) = dH/dλ and dt (u) = 1 we see that ω̃(u, v)

agrees with ω(u, v) computed above. �

Having proven the generalization of the result by Binney, Gerhard and Hut, we are now
in a position to prove formula (1).

Proof (theorem 1). Recall that the energy surface volume form η is a (2n−1)-form defined by
� = dH ∧ η with � = ωn/n!. The volume of MB→B ′ is defined by vol(MB→B ′) = ∫

MB→B′ η.
According to the above, we have ω = ω̃ in a neighbourhood of MB→B ′ . It follows that
� = dH ∧ dt ∧ dP2 ∧ dQ2 ∧ · · · ∧ dPn ∧ dQn from which we can read off η to be
η = dt∧ dP2∧ dQ2∧· · ·∧ dPn∧ dQn. Carrying out the integration in the direction of the flow,
we get vol(MB→B ′) = ∫

B
t dP2∧ dQ2∧· · ·∧ dPn∧ dQn where t (E, P2, . . . , Pn,Q2, . . . ,Qn)

is the time it takes the respective point in B to reach S ′ under the Hamiltonian flow. Since, in
B we have q1 = 0, and Pk = pk and Qk = qk, k = 2, . . . , n, it follows that the restriction of
dP2 ∧ dQ2 ∧ · · · ∧ dPn ∧ dQn to B coincides with the restriction of �′ = ωn−1/(n − 1)! to
B. We thus have vol(MB→B ′) = ∫

B
t�′ where, for a point in B, t is the time to reach its image

in B ′ under the Hamiltonian flow.
As shown by MacKay [21], �′ is the (2n−2)-form to measure flux through co-dimension

1 submanifolds of non-critical energy surfaces. Since we assume the energy E under
consideration to be non-critical, we can rewrite vol(MB→B ′) according to vol(MB→B ′) =
φB〈t〉B where φB = ∫

B
�′ is the flux through B and 〈t〉B = ∫

B
t�′/∫

B
�′ is the mean passage

time from B to B ′. �

4. Application to an example system

In order to illustrate how theorem 1 can be used to analyse the escape or reaction from a
potential well, we apply it to the Müller–Brown potential energy surface [23, 24] which is
a frequently used benchmark system in chemistry for testing algorithms in transition state
theory (see e.g. [25–27]). The Hamiltonian function for this system is

H = 1
2

(
p2

x + p2
y

)
+ V (x, y) (4)
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Figure 2. Iso-potential contours for the Müller–Brown surface. The bold contour is for energy
	E = 3 above the saddle at (x, y) ≈ (−0.822 00, 0.624 31). Shown also are local parts of the
stable and unstable manifolds of the NHIM (a periodic orbit) and a segment of a trajectory that
passes between the wells.

with the potential energy surface

V (x, y) =
4∑

k=1

Ak exp
[
ak

(
x − x0

k

)2
+ bk

(
x − x0

k

)(
y − y0

k

)
+ ck

(
y − y0

k

)2]
, (5)

where

A = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7),

b = (0, 0, 11, 0.6), c = (−10,−10,−6.5, 0.7),

x0 = (1, 0,−0.5,−1), y0 = (0, 0.5, 1.5, 1).

(6)

Equipotentials for this surface are shown in figure 2. The surface has two wells: a deep
well at the top and a shallow well with two local minima at the bottom. We want to use
formula (1) to compute the volume of initial conditions in either potential well which for a
fixed energy slightly above the energy of the saddle at (x, y) ≈ (−0.822 00, 0.624 31) can
escape to the other well. In phase space, the two wells are separated by a dividing surface
which we construct from the Poincaré–Birkhoff normalization procedure mentioned above.
In a phase-space neighbourhood of the corresponding equilibrium point (px, py, x, y) ≈
(0, 0,−0.822 00, 0.624 31) of Hamilton’s equations this yields a nonlinear transformation of
(px, py, x, y) to normal form coordinates (p1, p2, q1, q2). For the present system, which has
two degrees of freedom, the dividing surface is a two-dimensional sphere that is given by the
intersection of the normal form coordinate hyperplane q1 = 0 with the energy surface �E of
the energy E under consideration [7].2 The NHIM is an unstable periodic orbit; the Lyapunov
orbit associated with the saddle. It separates the dividing surface into two hemispheres which
are two-dimensional balls or discs. Every trajectory which passes from the top well to the
bottom well has to cross one hemisphere. Every trajectory which passes from the bottom
well to the top well has to cross the other hemisphere. These trajectories are enclosed by
the stable and unstable manifolds of the NHIM which have the structure of cylinders whose
configuration space projections are shown in figure 2.

2 Note that in the present letter, we have adopted a convention for the normal form coordinates that is slightly different
from the one in [7]. The systems are related by a simple symplectic rotation.
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Figure 3. Contours of the residence times on the dividing surface hemispheres. The top
(bottom) panels show the dividing surface hemisphere which corresponds to entrance to the
lower (top) potential well of the Müller–Brown potential. The colours represent the residence
times that trajectories started at the corresponding initial condition on the hemisphere spend in
the corresponding well. The time increases from green to yellow to red on a standard hue scale.
(a) and (d) are for energy 	E = 3 above the saddle energy, (b) and (e) are for energy 	E = 5
above the saddle energy. (c) and (f ) show the intersection of the stable manifolds of the NHIM
with the corresponding hemisphere for energy 	E = 5 above the saddle energy.

As a consequence of Liouville’s theorem on the conservation of phase-space volume [28],
every trajectory (up to a set of measure zero) that enters a well through one hemisphere has to
leave it at a later point in time through the other hemisphere. The reactive volume of either
well is thus given by the volume swept out by trajectory segments with initial conditions on
the corresponding hemisphere and endpoint on the other hemisphere. The NHIM’s stable and
unstable manifolds partition the reactive regions into subregions that correspond to different
types of reactive trajectories (see [29, 30] for a more detailed discussion). This is illustrated
in figure 3 which shows the dividing surface hemispheres for energies 	E = 3 and 	E = 5
above the energy of the saddle. We parameterize the dividing surface hemispheres by the
normal form coordinates (q2, p2), and show the contours of the residence time (the time spent
in the relevant well before the first exit of the well) for trajectories with initial conditions on
these hemispheres. The residence times vary smoothly within the stripes and tongue-shaped
patches appearing in figure 3. The boundaries of the patches correspond to the intersections of
the hemispheres with the stable manifolds of the NHIM which are also shown in figure 3. The
residence time is infinite on the boundaries. However, the divergence of the residence times
is only mild. Upon approaching a boundary from the interior of a single patch the residence
time diverges logarithmically. This is illustrated in figure 4 which shows a one-dimensional
cut through one of the hemispheres in figure 3. The plateaus of the residence times in figure 4
correspond to different types of reactive trajectories. The singularities of the residence times
at both ends of a plateau correspond to trajectories which are forward asymptotic in time to
the NHIM (the periodic orbit). The magnifications in figure 4 show that the plateaus and
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Figure 4. (a) Distribution of residence times along the line p2 = 0 in figure 3(e). (b) and (c) show
successive magnifications of a part of the graph in (a).

singularities form a self-similar structure which is well known from scattering theory. For a
more detailed discussion of these structures, see [30].

Theorem 1 at first only applies to regions in the interior of the patches in figure 3. Utilizing
standard arguments from integration theory it follows from the fact that the reactive volume
of a well is finite that the integrals in equations (2) and (3) can be extended over a whole patch
and also that the summation over the infinite number of patches converges. The summation
over the patches gives the reactive volumes of a well as the product of the flux and the average
total of the residence times of trajectories with initial conditions on the corresponding dividing
surface hemisphere. In the case of two degrees of freedom where the NHIM is a periodic orbit,
the flux is simply given by the action of the periodic orbit. For systems with more degrees
of freedom the flux is given by a generalized action integral over the NHIM which is easily
computed from the normal form [16]. The average residence time can be efficiently computed
from a Monte Carlo integration [29, 30].

We apply the above procedure for energies 	E = 3 and 	E = 5 above the
saddle and compare the results with a computationally expensive brute-force calculation
in which we sample initial conditions (uniformly distributed with respect to the measure
δ(E−H) dx dy dpx dpy) on the entire energy surface components associated with the potential
wells and integrate them in time until they either escape or reach a large cut-off time after
which escape is very unlikely. Figure 5 shows the resulting survival probabilities P(t), i.e. the
normalized histogram of trajectories which stay in the well under consideration up to time t.
The functions P(t) saturate for large t at values P∞ where 1 − P∞ can be identified with the
quotient of the reactive volume of a well and the total energy surface volume of that well. For
each well, and for both studied energies, P∞ is not equal to zero, indicating that the motions
in the wells are not ergodic. This is further illustrated in figure 6 which shows the dynamics
in terms of surfaces of section with the section condition px = 0, ṗx > 0. The ‘bottleneck’
of the energy surface due to the saddle is clearly visible (the wide-narrow-wide geometry near
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Figure 5. Survival probabilities for trajectories with initial conditions in the top well (a) and
bottom well (b) of the Müller–Brown potential for energies 	E = 3 and 	E = 5 above the
saddle. The inset in (a) shows a magnification of the survival probability graph for 	E = 3.

(a) 20

10

-10

-20
0 0.5 1 21.5

0

y

P
y

(b) 20

10

-10

-20
0 0.5 1 21.5

0

y

P
y

Figure 6. Poincaré surfaces of section for px = 0, ṗx > 0 for energies 	E = 3 (a) and
	E = 5 (b) above the saddle. Green dots mark reactive trajectories; orange dots mark non-
reactive trajectories. The region to the left (right) of y ≈ 0.624 31 corresponds to the bottom (top)
well of the Müller–Brown potential in figure 2.

y ≈ 0.624 31). The parts to the left and right of y ≈ 0.624 31 in figure 6 correspond to
the bottom and top wells of the Müller–Brown potential, respectively. Reactive trajectories
and non-reactive trajectories are marked green and orange, respectively. In agreement with
the survival probability curves in figure 5, the surfaces of section in figure 6 indicate that the
portion of reactive trajectories is much higher in the lower well than it is in the top well. It is
worth mentioning that knowledge of the area of a region in the surface of section (occupied
e.g. by reactive or non-reactive trajectories) alone is not sufficient to compute the volume of
the corresponding three-dimensional region on the energy surface (see [22] for a thorough
discussion of this issue).

For comparison, figure 5 also shows the values for the reactive volume computed from
formula (1) as horizontal lines. In each case the computation of P∞ using (1) is able to
reproduce the results from the brute-force method with an error less than 2%.

5. Conclusions and outlook

We presented a method which enables one to compute the volumes of reactive initial conditions
from the exact dynamics. It reduces the brute-force integration over the (2n − 1)-dimensional
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energy surface to a (2n − 2)-dimensional integral over a dividing surface hemisphere which
has a much simpler parametrization than the energy surface. As indicated in the example
shown it opens the way to study fundamental questions in the context of the transition state
theory, such as non-RRKM behaviour and memory effects. If several exit/entrance channels
coexist, one has to apply the scheme illustrated in the example to each channel individually
and sum over the resulting terms (1). The method has no limitations concerning the number
of degrees of freedom nor on the type of Hamiltonian, which may have magnetic or Coriolis
terms. For high-dimensional systems, the flux is also computed easily from the normal form
[16]. Similarly, the mean passage time associated with an entrance channel can be obtained
very efficiently from a Monte Carlo integration as we already demonstrated in applications
to high-dimensional systems in celestial mechanics and chemistry [29, 30] for which we
computed the phase-space structures mentioned earlier [8, 31].
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[13] de Oliveira H P, Ozorio de Almeida A M, Damĩa o Soares I and Tonini E V 2002 Phys. Rev. D 65 083511
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